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Context/Objective: The variant rs13266634 in SLC30A8, encoding a beta-cell specific zinc trans-

porter, is associated with type 2 diabetes. We aimed to identify other variants in SLC30A8 that

increase diabetes risk and impair beta-cell function, and test whether zinc intake modifies this

risk.

Design/Outcome: We sequenced exons in SLC30A8 in 380 Diabetes Prevention Program (DPP)

participants and identified 44 novel variants, which were genotyped in 3,445 DPP participants

and tested for association with diabetes incidence and measures of insulin secretion and pro-

cessing. We examined individual common variants and utilized gene burden tests to test 39 rare

variants in aggregate.

Results: We detected a near nominal association between a rare-variant genotype risk score and

diabetes risk. Five common variants were associated with the oral disposition index (DIo). Various

methods aggregating rare variants demonstrated associations with changes in DIo and insuli-

nogenic index during year-1 of follow-up. We did not find a clear interaction of zinc intake with

genotype on diabetes incidence.
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Conclusions: Individual common and an aggregate of rare genetic variation in SLC30A8 are
associated with measures of beta-cell function in the DPP. Exploring rare variation may com-
plement ongoing efforts to uncover the genetic influences that underlie complex diseases.

Individuals of European descent who carry the C vs T
allele in the missense single nucleotide polymorphism

(SNP) rs13266634 at SLC30A8 (encoding ZnT8) have
elevated type 2 diabetes (T2D) risk (1), impaired �-cell
function, higher proinsulin levels (adjusted for fasting in-
sulin) (2, 3) and zinc intake appears to modify glycemic
effects of this locus (4). ZnT8 transports zinc molecules,
essential for insulin storage and processing, into insulin
granules (5). In vitro and mouse models have demon-
strated that disruption of Slc30a8 zinc transport alters
insulin crystallization and results in decreased insulin se-
cretion (6–9). The risk variant at rs13266634 was not
significantly associated with diabetes incidence in the Di-
abetes Prevention Program (10). Therefore, we sequenced
regions in SLC30A8 in 380 DPP participants and subse-
quently genotyped discovered variants in the full DPP pop-
ulation. By examining variants individually and in aggre-
gate, we aimed to identify variants at SLC30A8, beyond
the index variant rs13266634, associated with diabetes
incidence and impaired �-cell function, and test whether
zinc intake modified these effects.

Materials and Methods

The DPP enrolled 3,819 US participants at high-risk of devel-
oping type 2 diabetes (overweight, elevated fasting glucose, and
impaired glucose tolerance) (11), from which a subset, 3,445
participants, consented to genetic testing. Of these participants,
we examined 2,997 who were randomized to placebo, met-
formin 850 mg twice daily, or lifestyle intervention with a goal
weight loss of � 7% and � 150 minutes/wk of physical activity
for association with all the outcomes. Participants in a fourth
troglitazone treatment arm (n � 585) were included in genotyp-
ing, but not included in the association testing due to early ter-
mination (12). Power calculation for alleles of various frequen-
cies and effect sizes on diabetes incidence can be found in the
Supplementary Table 1 in Moore et al (10). Ethical approval was
obtained by local human research committees and all partici-
pants gave informed consent.

Diabetes incidence was determined by a diagnostic fasting or
2-hour glucose after OGTT, confirmed by a second test (11). We
measured �-cell function including the insulinogenic index (In-
sIndex [U/ml]/[mg/dl] � �Insulin30–0min/�Glucose30–0min) (13)
and the oral disposition index (DIo [mg/dl]-1� InsIndex*1/fast-
ing insulin) (14). We provided the association with fasting glu-
cose and proinsulin (adjusted for fasting insulin) for all analyses
(Online Supplemental Tables 1–3) to corroborate prior findings
(15, 16). Baseline zinc intake was determined using a modified
Block Food Frequency Questionnaire (17).

We sequenced 380 DPP participants (76 from each ethnicity
group). We oversampled participants who developed diabetes to

enrich our analysis for diabetes-related variants. The sequenced
individuals were included in the subsequent association analyses
of 2,997 participants.

We used Sanger sequencing on an ABI3730 DNA Analyzer
for 2X coverage of eight exonic regions, 5�UTR with 50 base
pairs (bps) around each intron/exon junction, 1,000 bps up-
stream and downstream of SLC30A8, and 1,000 bps surround-
ing rs13266634. We genotyped 69 SNPs discovered in sequenc-
ing and 10 SNPs annotated to SLC30A8 but not identified
during sequencing in 3,445 participants. After quality control
(QC) (nonconcordance between genotyping and sequencing,
failed assay design, call rate � 95%, failed Hardy-Weinberg
equilibrium with a P � .001), 61 SNPs (44 of which were novel)
were further analyzed.

Twenty-two “common” SNPs (minor allele frequency [MAF]
�0.01 in at least one ethnic group) were examined using Cox
proportional hazard models for association with diabetes inci-
dence and analysis of covariance (ANCOVA) for association
with the quantitative traits. Results were stratified by treatment
group for a genotype*treatment group interaction P � .05. We
adjusted for sex, age at randomization, baseline BMI, self-re-
ported ethnicity and, if applicable, treatment group and respec-
tive baseline trait. Follow-up analyses included the SNP as a class
variable obtaining marginal means, and compared differences
between genotypic groups

We utilized five methods to test the association between 39
“rare” genetic variants (MAF � 0.01 in all ethnicities) and the
outcome.

Three genetic risk scores (GRS) were constructed by summing
the number of minor alleles over the sample: 1) A GRS including
all 60 SNPs, not including rs1326634, 2) a “missense GRS”
included four novel missense variants (8 118228561,
8 118239185, 8 118252509, 8 118254036) and one
known missense variant (rs16889462), 3) and a “rare GRS”
included the 39 rare SNPs. A combined multivariate and col-
lapsing (CMC) method, coded each participant as having a vari-
ant with a MAF � 2% as “present” or no rare variants “absent”
(18). The Sequence Kernel Association Test (SKAT) allows vari-
ants to have different directions and magnitude of effects (19).
The GRS and CMC were used in the models described above to
test the associations with the outcomes. SKAT was used for test-
ing associations with the �-cell function traits only. All scores
were tested for interaction by treatment group and stratified if
P � .05 except SKAT which does not allow for interaction terms
and was stratified up-front by treatment group. In a follow-up
analysis, we used a Wilcoxon rank sum test to examine the as-
sociation between the individual rare variants and quantitative
traits stratified by treatment group.

We tested whether zinc intake modified diabetes risk con-
ferred by SLC30A8 variants by adding additional covariates:
baseline zinc intake, total caloric intake, and an interaction term
for baseline total zinc intake*genotype or GRS covariate, and
factors that affect intestinal zinc absorption (iron intake, log
calcium intake, polyunsaturated-to-saturated fat intake and log
dietary fiber) (20). For interaction P � .05, we stratified by ge-
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notype and obtained hazard ratios (HR) per 1 mg/d difference in
baseline zinc intake.

Given the high prior probability of association with T2D, we
used a traditional alpha level of 0.05 for statistical significance.

Results

Sixty-one SLC30A8 variants (44 novel) passed QC (On-
line Supplemental Table 4) and were analyzed. Five novel
missense variants were “probably damaging” on bioin-
formatic analysis (Online Supplemental Table 5) and a
subset of SNPs had predicted regulatory consequences
(Online Supplemental Table 6).

Common variants were not associated with diabetes
incidence (Online Supplemental Table 7). The minor al-
leles of rs2464591, rs2466296, rs2466297, and
rs2466299 (r2�0.9, HapMap CEU and YRI) were asso-
ciated with a positive �DIo (P � .0005), whereas the minor
allele of rs2466293 was associated with a negative �DIo

(Table 1). rs16889462 was associated with improved In-

sIndex in the AG/AA vs the GG in the metformin group,
but not in the other treatment groups (Online Supplemen-
tal Table 2). The minor allele of rs3802177 was associated
with higher InsIndex, lower baseline PI(FI) levels, and
greater decrease in fasting glucose during the first year
(Table 1 and Supplemental Table 1 and 2).

The rare variant GRS showed a tentative direct rela-
tionship with diabetes incidence (HR � 1.27 [1.00–1.61]
per rare variant allele; P � .05). (Table 2). One-hundred-
twenty-five participants carried only one, 33 carried two,
and one carried three rare variants and was grouped with
the two-variant carriers.

Various rare variant methods showed an association
with �-cell function (Table 2). SNP* treatment interac-
tions were nonsignificant (P � .05) for all methods. For
each additional GRS minor allele, there was a 0.001 (SE
0.0002) change in the DIo (P � .0003). This association
was no longer significant after removing rs2466293,
rs2464591, rs2466296, rs2466297, and rs2466299 from
the GRS (P � .2). With the CMC method, carriers of at

Table 1. Significantly associated SLC30A8 genetic variants tested for association with glucose and insulin-related
quantitative traits.

SNP Trait Genotype

Treatment Adjusted
Means (95%

CI) P

Common SNPs (MAF
�1%)

8 118252680 �InsIndex GG 0.024 (-0.037 to 0.084) 0.04
GA/AA �0.130 ( �0.283 to 0.023)

�DIo AA 0.009 (0.005 to 0.013) 0.0001
AG 0.005 (0.001 to 0.009)
GG �0.003 (-0.008 to 0.003)

rs6469675 �InsIndex AA �0.018 (-0.091 to 0.055) 0.05
AG 0.026 (-0.048 to 0.100)
GG 0.100 (-0.100 to 0.209)

rs2464591 �DIo GG 0.002 (-0.001 to 0.006) 0.0003
GA 0.007 (0.003 to 0.011)
AA 0.015 (0.009 to 0.022)

rs2466296 �DIo GG 0.002 (-0.002 to 0.006) 0.0002
GA 0.006 (0.002 to 0.011)
AA 0.015 (0.009 to 0.022)

rs2466297 �DIo CC 0.002 (-0.001 to 0.006) 0.0003
CT 0.006 (0.002 to 0.011)
TT 0.016 (0.009 to 0.022)

rs2466299 �DIo GG 0.002 (-0.002 to 0.006) 0.0002
GA 0.007 (0.003 to 0.011)
AA 0.015 (0.009 to 0.022)

rs3802177 InsIndex GG 1.21 ( 1.15 to 1.27) 0.04
GA 1.28 ( 1.22 to 1.35)
AA 1.27 ( 1.15 to 1.40)

rs13266634 InsIndex CC 1.20 (1.14 to 1.26) 0.02
CT 1.27 (1.20 to 1.34)
TT 1.30 (1.17 to 1.43)

Common SNPs rs2466293 and rs16889462 had a significant genotype*treatment interaction for �FG and �InsIndex, respectively, are found in
Online Supplemental Table 2. Minor alleles are underlined. SNPs above did not have a significant genotype*treatment. Analysis was adjusted
by age, sex, BMI, and ethnicity; and additionally adjusted for treatment group and corresponding baseline trait for the year-1 change traits.
InsIndex � insulinogenic index; DIo � oral disposition index; � � change in trait between year 1 and baseline. P values reported are from the one
degree of freedom additive model. Sample size by genotype for baseline traits analysis is detailed in Online Supplemental Table 1.
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least one minor allele of the 39 rare variants had a mean
�InsIndex of 0.034 (95% CI, –0.027 to 0.096), while
carriers of no rare variants had –0.079 (95% CI, –0.187
to –0.028) (P � .03). No statistically significant associa-
tions were seen between the individual rare variants and
these traits (Online Supplemental Table 3).

Three SNPs (8 118252314, 8 118252435,
rs16889462), two of which were novel, modified the effect
of total zinc intake on diabetes risk, but had no clear ad-
ditive trend with each additional minor allele (Online Sup-
plemental Table 8).

Discussion

We identified 44 novel variants through targeted sequenc-
ing of the T2D candidate gene SLC30A8 in the DPP. In
aggregate, rare variants appear to influence diabetes risk
and related traits, illustrating that both rare and common
genetic variation may influence diabetes risk. Zinc intake
did not appear to modify the genetic predisposition to
diabetes at this locus, suggesting a limited role for dietary
manipulations in modifying genetic risk.

We identified 39 rare variants, unique to certain eth-
nicities (Online Supplemental Table 4). Despite the “prob-
ably damaging” prediction by bioinformatic analysis, the
individual missense variants and the missense variant GRS
were not associated with diabetes incidence or quantita-
tive traits. Further functional studies where point muta-
tions are introduced into SLC30A8 constructs for trans-
fection into beta cells may elucidate whether these variants
attenuate or enhance protein function. Similarly, pheno-
typing individuals with definite loss-of-function muta-
tions should be informative with regard to the direction of
SLC30A8 variation on glycemic regulation in humans.
We did not identify any loss of function variants in
SLC30A8 in this multiethnic cohort which underscores
the drive for conservation and therefore relevance of this
gene for metabolism.

Although none of the common SNPs was associated
with diabetes incidence, we found associations between

SLC30A8 variants and insulin secretion traits. The minor
alleles of rs2464591, rs2466296, rs2466297, and
rs2466299 were associated with an improvement in �-cell
function, illustrated by an increase in DIo. Conversely, the
rs2466293 minor allele was associated with a decrease in
�-cell function. Given the nonsignificant
treatment�genotype interaction, it appears that these
variants influence glycemia similarly among all the inter-
vention groups. These findings exemplify that SLC30A8
variation comparably influences improvements or deteri-
orations of �-cell function over a year’s follow-up, inde-
pendent of insulin-sensitizing interventions that reduce di-
abetes risk.

We employed five methods to examine the contribution
of rare genetic variation on diabetes risk and glucose- and
insulin-related traits. The GRS was associated with �DIo

and the CMC method revealed an association between
carriers of rare variants and �InsIndex. These results sug-
gest that rare SLC30A8 variation may have functional
significance beyond the index SNP, rs13266634. The GRS
and CMC methods are limited in that they presume that
the rare allele is deleterious, which may not always be true
despite our ascertainment having been largely conducted
in participants who went on to develop diabetes. There-
fore, this assumption may dilute the true impact of the rare
GRS. This limitation is addressed with the SKAT method,
which allows variants to have different directions and
magnitude of effects (19); here we did not see an associ-
ation with �-cell function. Although limited by power,
none of the rare SNPs appear to have very large effects, but
the aggregate burden of rare SLC30A8 variation influ-
ences �-cell function. These findings provide the basis for
future studies with the Exome chip implemented in larger
populations where the rare variants can be adequately
tested individually.

Limitations. We were able to enhance statistical power by
constructing aggregate variant scores, but this method
does not model the behavior of individual variants. As
these methods continue to evolve, functional experiments

Table 2. P-values for association tests using various methods to test aggregates of rare variants for association
with diabetes incidence and �-cell function.

GRS
Missense

GRS
Rare
GRS CMC SKAT*

Diabetes Incidence 0.66 0.24 0.05 0.31 -
Baseline InsIndex 0.96 0.41 0.46 0.44 0.25
Baseline DIo 0.88 0.07 0.26 0.84 0.49
�InsIndex 0.82 0.60 0.14 0.03 0.98
�DIo 0.0003 0.80 0.53 0.30 0.99

InsIndex � insulinogenic index; DIo � oral disposition index; � � change in trait between year 1 and baseline. *SKAT analysis stratified by
treatment group is in Online Supplemental Table 2.
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will be needed to further elucidate the mechanism by
which rare variants influence phenotypes. Additionally,
this study lacks a validation cohort and nominal associa-
tions found in this study warrant follow-up elsewhere.
Furthermore, our sequencing efforts started prior to the
introduction of next-generation sequencing techniques
and only sequenced targeted regions of SLC30A8; thus,
novel variants may have been overlooked.

Our study showed that an aggregate of rare variants in
SLC30A8 may increase diabetes risk and influence mea-
sures of �-cell function. This study supports the pursuit of
rare variation to better understand the genetics of complex
traits.
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